
Propagation of Errors from 
Nuisance Parameters in qMRI

Mark D. Does, PhD
Vanderbilt University



FULL PAPER

Propagation of Error From Parameter Constraints in
Quantitative MRI: Example Application of Multiple Spin
Echo T2 Mapping
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Purpose: Quantitative MRI may require correcting for nuisance
parameters which can or must be constrained to indepen-
dently measured or assumed values. The noise and/or bias in
these constraints propagate to fitted parameters. For example,
the case of refocusing pulse flip angle constraint in multiple
spin echo T2 mapping is explored.
Methods: An analytical expression for the mean-squared error
of a parameter of interest was derived as a function of the
accuracy and precision of an independent estimate of a nui-
sance parameter. The expression was validated by simulations
and then used to evaluate the effects of flip angle (u) con-
straint on the accuracy and precision of T̂ 2 for a variety of
multi-echo T2 mapping protocols.
Results: Constraining u improved T̂ 2 precision when the u-map
signal-to-noise ratio was greater than approximately one-half that
of the first spin echo image. For many practical scenarios, con-
strained fitting was calculated to reduce not just the variance but
the full mean-squared error of T̂ 2, for bias in û!6%.
Conclusion: The analytical expression derived in this work
can be applied to inform experimental design in quantitative
MRI. The example application to T2 mapping provided specific
cases, depending on û accuracy and precision, in which û
measurement and constraint would be beneficial to T̂ 2 vari-
ance or mean-squared error. Magn Reson Med 79:673–682,
2018. VC 2017 International Society for Magnetic Resonance
in Medicine.
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INTRODUCTION

Accurate parameter mapping with MRI often requires
consideration of nuisance parameters that affect acquired
signals. For example, the signal from a multiple spin
echo sequence will depend on both T2 (a tissue parame-
ter of interest) and the refocusing pulse flip angle (a nui-
sance parameter). A similar situation involving field
variations in Bþ1 and/or DB0 exists for various T1 map-
ping protocols (1–3), quantitative magnetization transfer

methods (4,5), dynamic contrast enhanced MRI (6),
water/fat imaging (7) and MR fingerprinting (8). Also,
some methods are specifically designed as a multi-stage
protocol; for example, DESPOT1/2 (9) involves the mea-
surement of T1 which then serves as a nuisance parame-
ter for the measurement of T2. In these and other
situations, it may be possible to jointly fit the nuisance
parameter(s) along with the parameter(s) of interest, but
it may also be possible or even necessary to indepen-
dently measure one or more of the nuisance parameters
and fit the remaining signal model parameters while
using the independent measurements as constraints.
Some such evaluations exist in the literature for specific
cases (10–12), but to our knowledge no general frame-
work for analyzing the propagation of error from inde-
pendently measured nuisance parameters has been
reported.

It is well-known that constraining parameters in a joint
fit will generally improve the precision of the remaining
fitted parameters and will simplify the fitting processes,
thereby reducing the likelihood of convergence to a local
minimum. The cost of parametric constraint is the
imparting of bias in remaining parameters, although
these biases may be small compared to their respective
variances. This tradeoff is captured in a parameter’s
mean-squared error—the sum of its variance and squared
bias—which may actually decrease as a result of para-
metric constraint (13). The objective of this work is to
provide a theoretical framework for analyzing the effect
of nuisance parameter constraint on the precision and
accuracy of fitted model parameters, for the purpose of
guiding quantitative MRI experiment design.

As an example, this framework is applied to the case of
multiple spin echo-based T2 mapping. Accurate T2 map-
ping with a multiple spin echo imaging sequence requires
accounting of echoes from indirect signal pathways
(14–17), which can be done by joint fitting of T2 and refo-
cusing flip angle (18). Useful signal models for such analy-
sis include the extended phase graph model (EPG)
(16,18–23), the echo generating function (24,25), and the
Bloch equations (12,26,27). For an appropriate multiple
spin echo sequence, each of these models can determine
echo magnitudes given four parameters: equilibrium mag-
netization (M0), the relaxation time constants T1 and T2,
and the refocusing pulse flip angle (u). Due to the rela-
tively weak T1-dependence of multiple spin-echo signals,
T1 can be fixed to an approximate value and subsequently
ignored (18). The remaining three unknown parameters
can be jointly fitted from the measured echo magnitudes;
alternatively, one can independently measure u from a Bþ1
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Quantitative MRI (qMRI): Overview
• Provide quantitative measures that are suitably:

• Accurate

• Precise

• Efficient

• Robust

• Useful
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propagation of error
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Types of Parameters
• The signal is a function of parameters,

• independent parameters, known  
e.g., TE, TR, … 

• model parameters, unknown 

• parameters of interest 
e.g., M0, T2, T1, …

• freely fitted, 

• nuisance parameters 
e.g,. B1, B0, …

• may be constrained,  
or fitted,  

s (q ) = f (β, q )
independent parameters

model parameters

β = [βf
βc]

βf

βcβf



E.g., T2 Measurement
• Objective: measure T2 via multiple spin echo MRI

90°

s1

s2
s3 …



E.g., T2 Measurement
• Objective: measure T2 via multiple spin echo MRI

• Signal Equation, 

• Model parameters of interest: 

• Nuisance parameter:  

90°

s1

s2
s3 …

θ
M0, T2

s (te) = EPG [te; M0, T2, θ]



E.g., T2 Measurement
• Objective: measure T2 via multiple spin echo MRI

• Signal Equation, 

• Model parameters of interest: 

• Nuisance parameter:  

90°

s1

s2
s3 …

θ
M0, T2

s (te) = EPG [te; M0, T2, θ]



E.g., T2 Measurement
• Objective: measure T2 via multiple spin echo MRI

• Signal Equation, 

• Model parameters of interest: 

• Nuisance parameter:  

90°

s1

s2
s3 …

θ
M0, T2

s (te) = EPG [te; M0, T2, θ]



E.g., T2 Measurement
• Objective: measure T2 via multiple spin echo MRI

• Signal Equation, 

• Model parameters of interest: 

• Nuisance parameter:  

• Constrain to an  
assumed or measured value

• Jointly fit with other parameters   

90°

s1

s2
s3 …

θ
M0, T2

s (te) = EPG [te; M0, T2, θ]



E.g., T2 Measurement
• Objective: measure T2 via multiple spin echo MRI

• Signal Equation, 

• Model parameters of interest: 

• Nuisance parameter:  

• Constrain to an  
assumed or measured value

• Jointly fit with other parameters   

• What precision & accuracy in a measured    
will result in a lower MSE of      
c/w jointly fitting                ? 

90°

s1

s2
s3 …

θ

̂θ̂T2

M0, T2

M0, T2, θ

s (te) = EPG [te; M0, T2, θ]
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Propagation of Error

• Three possible sources

• noise (imprecision) in images

• noise (imprecision) in nuisance 
parameter measurement

• bias (inaccuracy) in nuisance 
parameter measurement (or 
assumption)

Prop of Image Noise

Prop of Constraint Noise

Prop of Constraint Error

Mean Squared Error



Term 1: error from noise in images

• Cramér-Rao bound of variance  
(in the absence of !c or if !c are 
constrained perfectly)

σ2
s (JT

βf
Jβf)

− 1
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Term 1: error from noise in images

• Cramér-Rao bound of variance  
(in the absence of !c or if !c are 
constrained perfectly)

• # is the model jacobian

• compute partial derivatives for a 
given set of " and ! values

• analytical or finite-difference

• for T2 example

Jβf
=

∂s1/∂βf,1 … ∂s1/∂βf,Mf

⋮ ⋮
∂sN/∂βf,1 … ∂sN/∂βf,Mf

∂EPG [te; M0, T2, θ]/∂M0

∂EPG [te; M0, T2, θ]/∂T2

σ2
s (JT

βf
Jβf)

− 1



Term 1I: error from noise in nuisance 
parameter maps

• first-order propagation-of-error from 
to   

̂βĉβf
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Term 1I: error from noise in nuisance 
parameter maps

• first-order propagation-of-error from 
to   

• the noise covariance of nuisance 
parameters

• zero if !c are assumed

• the average fitted parameters for given 
average nuisance parameters

Σ ̂βc
=

σ2
̂βc1

… σ2
̂βc1 ̂βcMc

⋮ ⋮
σ2

̂βc1 ̂βcMc
… σ2

̂βcMc

β̄f (β̄c)∂β̄f (β̄c)
∂β̄c

=
∂β̄f1/∂β̄c1 … ∂β̄f1/∂β̄cMc

⋮ ⋮
∂β̄fMf

/∂β̄c1 … ∂β̄fMf
/∂β̄cMc

̂βĉβf



Term 1I: error from noise in nuisance 
parameter maps

For the T2 example  

• compute      by CRB evaluation of B1 
mapping method 

Σ ̂βc
= σ2

̂θσ2
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Term 1I: error from noise in nuisance 
parameter maps

For the T2 example  

• compute      by CRB evaluation of B1 
mapping method 

• compute T2(#) and M0(#) from noiseless 
images 

• partial derivate estimated by finite 
difference approximation across #

• if we only care about errors in fitted T2, 
term II reduces to →

∂β̄f (β̄c)
∂β̄c

= [
∂T̄2/∂θ̄
∂M̄0/∂θ̄]

Σ ̂βc
= σ2

̂θ

σ2
̂θ (∂T̄2/∂θ̄)

2

σ2
̂θ



Term I1I: error from bias in nuisance 
parameter maps

• bias in fitted parameters β̄f (β̄c) − βf



Term I1I: error from bias in nuisance 
parameter maps

• bias in fitted parameters 

• squared error 

β̄f (β̄c) − βf

(β̄f (β̄c) − βf) (β̄f (β̄c) − βf)
T



Term I1I: error from bias in nuisance 
parameter maps

• bias in fitted parameters 

• squared error 

• again, considering only error in fitted T2, 
term III is →

β̄f (β̄c) − βf

(β̄f (β̄c) − βf) (β̄f (β̄c) − βf)
T

(T̄2 (θ̄) − T2)
2



T2 Example Calculations

• Image SNR = 100, T2 = 20-200 ms, NE/ESP = 32/10 ms and 4/30 ms
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• if SNR(#) > 1/2 image SNR, use measure #
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Example Results: Accuracy
• image SNR = 100, T2 = 80 ms, NE/ESP = 32/10 ms and 4/30 ms

• noiseless calculations, bias in   (term III only)

• bias in fitted T2 is smallest for large # (and small # bias); worse for fewer 
echoes

̂θ



Example Results: Mean Squared Error



Example Results: Bias Threshold

• maximum   -bias that allows reduced 
MSE(T2) by measuring #

• example results for  
# = 150° and T2 = 80 ms

• If image SNR is high

• need low   -bias, 

• need unbiased   if SNR(  ) ≤ 1/2 
SNR(image)

• E.g., SNR(image) = 60

̂θ
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Summary
• Nuisance parameters affect accuracy and precision of qMRI

• Propagation of error provides a relatively easy framework to compute 
these effects

• can be extended to arbitrarily complex problems 

• E.g., T2 measurement: measuring flip angle may or may not reduce MSE(T2), 
depending on the accuracy and precision of the flip angle measurements 

• Need better characterization of the accuracy and precision of B1 and B0 
mapping methods


